If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+147X-1200=0
a = 1; b = 147; c = -1200;
Δ = b2-4ac
Δ = 1472-4·1·(-1200)
Δ = 26409
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(147)-\sqrt{26409}}{2*1}=\frac{-147-\sqrt{26409}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(147)+\sqrt{26409}}{2*1}=\frac{-147+\sqrt{26409}}{2} $
| 38+x=215 | | 16=8(n+47) | | 2(10z+16)=20z+3-18 | | .25x+0.8=-1.2 | | x=3(6/17)-10 | | 20-1+11n=8n-20 | | a-2/1-2=2/1-2 | | (11y-36)=180 | | 7q+19=82 | | v/3-11=7 | | -20p+2(18p-20)=16p | | -5x-(6-x)=2(x-7) | | (11y-36)+(7y=4) | | 7z+7=2z-25 | | 17+14y-12=5+14y | | (Y-1)+2(y+3)=13 | | 10+3x=180 | | (11y-26)+(7y=4)=180 | | -6+4k=19+16+4k | | 11x+53=180 | | 15y-10+2y=-16 | | (11y-26)+(7y=4) | | -4+9r=-14r+11+18r | | 18=-4y+2 | | 16+11h=-17+14h-15 | | 150+50+2x=360 | | y=3/4(-2)+2 | | 3+20p=p-6+20p | | 3t+15=3t+13+2 | | 3x=;x+19 | | 5p+15=90 | | 4w+10=5w+41 |